Publications By Topic
Distributed Vision
Chappell, D.R, and D.I. Speiser (2023). Polarization sensitivity and decentralized visual processing in an animal with a distributed visual system. Journal of Experimental Biology 226(4): jeb244710. DOI: 10.1242/jeb.244710
Speiser, D.I, D.R. Chappell, J.A. Audino, A.C.N. Kingston, and J.M. Serb (2023). Distributed visual systems in pteriomorphian bivalves. In book: Distributed Vision: Simple Sensors to Sophisticated Combination Eyes, eds. E. Buschbeck and M. Bok. Springer International Publishing, pp. 117-145. DOI: 10.1007/978-3-031-23216-9_5
Chappell, D.R, D.I. Speiser, D.J. Eernisse, and A.C.N. Kingston (2023). Distributed light-sensing systems in chitons. In book: Distributed Vision: Simple Sensors to Sophisticated Combination Eyes, eds. E. Buschbeck and M. Bok. Springer International Publishing, pp. 147-167. DOI: 10.1007/978-3-031-23216-9_6
Chappell, D.R, T.M. Horan, and D.I. Speiser (2021). Panoramic spatial vision in the bay scallop Argopecten irradians. Proc. R. Soc. B 288: 20211730. DOI: 10.1098/rspb.2021.1730
Chappell, D.R, and D.I. Speiser (2020). Visual Ecology: Now you see, now you don't. Current Biology 30(2): R71-R73. DOI: 10.1016/j.cub.2019.12.002
Miller, H.V, A.C.N. Kingston, Y.L, Gagnon, and D.I. Speiser (2019). The mirror-based eyes of scallops demonstrate a light-evoked pupillary response. Current Biology 29(9): R313-R314. DOI: 10.1016/j.cub.2019.03.053
Kingston, A.C.N, D.R. Chappell, and D.I. Speiser (2018). Evidence for spatial vision in Chiton tuberculatus, a chiton with eyespots. Journal of Experimental Biology 221(19): jeb183632. DOI: 10.1242/jeb.183632
Kingston, A.C.N, D.R. Chappell, H.V. Miller, S.J. Lee, and D.I. Speiser (2017). Expression of G Proteins in the Eyes and Parietovisceral Ganglion of the Bay Scallop Argopecten irradians. The Biological Bulletin, 233(1), 83-95. DOI: 10.1086/694448
Speiser, D.I, Y.L. Gagnon, R.K. Chhetri, A.L. Oldenburg, and S. Johnsen (2016). Examining the Effects of Chromatic Aberration, Object Distance, and Eye Shape on Image-Formation in the Mirror-Based Eyes of the Bay Scallop Argopecten irradians. Integrative and Comparative Biology 56(5): 796-808. DOI:10.1093/icb/icw099
Speiser, D.I, and L.A. Wilkins (2016). Neurobiology and behaviour of the scallop. In book: Scallops: Biology, Ecology, Aquaculture, and Fisheries 3rd Edition, eds. S.E. Shumway and G.J. Parsons. Elsevier Science, pp. 219-251.
Speiser, D.I, D. Eernisse, and S. Johnsen (2011). A chiton uses aragonite lenses to form images. Current Biology 21: 665-670. DOI:10.1016/j.cub.2011.03.033.
Speiser, D.I, E.R. Loew, and S. Johnsen (2011). Spectral sensitivity of the concave mirror eyes of scallops: Potential influences of habitat, self-screening and longitudinal chromatic aberration. Journal of Experimental Biology 214: 422-431.
DOI:10.1242/jeb.048108.
DOI:10.1242/jeb.048108.
Speiser, D.I, and S. Johnsen (2008). Comparative morphology of the concave mirror eyes of scallops (Pectinoidea). American Malacological Bulletin 26: 27-34. DOI:10.4003/006.026.0204.
Speiser, D.I, and S. Johnsen (2008). Scallops visually respond to the presence and speed of virtual particles. Journal of Experimental Biology 211: 2066-2070. DOI:10.1242/jeb.017038.
Visual Ecology
Irwin, A.R, S.T. Williams, D.I. Speiser, and N.W. Roberts (2022). The marine gastropod Conomurex luhuanus (Strombidae) has high-resolution spatial vision and eyes with complex retinas. Journal of Experimental Biology 225(16): jeb243927. DOI: 10.1242/jeb.243927
Havens, L.T, A.C.N. Kingston, and D.I. Speiser (2021). Automated methods for efficient and accurate electroretinography. Journal of Comparative Physiology A 207: 381-391. DOI: 10.1007/s00359-021-01476-4
Kingston, A.C.N, D.R. Chappell, and D.I. Speiser (2020). A snapping shrimp has the fastest vision of any aquatic animal. Biology Letters 16: 20200298. DOI: 10.1098/rsbl.2020.0298
Kingston, A.C.N, R.L. Lucia, L.T. Havens, T.W. Cronin, and D.I. Speiser (2019). Vision in the snapping shrimp Alpheus heterochaelis. Journal of Experimental Biology 221(21): jeb209015. DOI: 10.1242/jeb.209015
Gagnon, Y.L, D.I. Speiser, and S. Johnsen (2014). Simplifying numerical ray-tracing for characterisation of optical systems. Applied Optics 53: 4784-4790. DOI:10.1364/AO.53.004784.
Brandley, N.C, D.I. Speiser, and S. Johnsen (2013). Eavesdropping on visual secrets. Evolutionary Ecology 27: 1045-1068. DOI:10.1007/s10682-013-9656-9.
Speiser, D.I, R.I. Lampe, V.R. Lovdahl, B. Carrillo-Zazueta, A.S. Rivera and T.H. Oakley (2013). Evasion of predators contributes to the maintenance of male eyes in dimorphic Euphilomedes ostracods (Crustacea). Integrative and Comparative Biology 53: 78-88.
DOI: 10.1093/icb/ict025.
DOI: 10.1093/icb/ict025.
Natural Armor Systems
Kingston, A.C.N, S.A. Woodin, D.S. Wethey, and D.I. Speiser (2022). Snapping shrimp have helmets that protect their brains by dampening shock waves. Current Biology 32(16): 3576-3583. DOI: 10.1016/j.cub.2022.06.042
Kingston, A.C.N, D.R. Chappell, L. Koch, S. Johnsen, and D.I. Speiser (2021). The orbital hoods of snapping shrimp have surface features that may represent tradeoffs between vision and protection. Arthropod Structure & Development 61: 101025. DOI: 10.1016/j.asd.2020.101025
Varney, R.M, D.I. Speiser, C. McDougall, B.M. Degnan, and K.M. Kocot (2020). The iron-responsive genome of the chiton Acanthopleura granulata. Genome Biology and Evolution, evaa263. DOI: 10.1093/gbe/evaa263
Kingston, A.C.N, J.D. Sigwart, D.R. Chappell, and D.I. Speiser (2019). Monster or multiplacophoran: A teratological specimen of the chiton Acanthopleura granulata (Mollusca: Polyplacophora) with a valve split into independent and symmetrical halves. Acta Zoologica 101(3): 242-246. DOI: 10.1111/azo.12289
Li, L, M.J. Connors, M. Kolle, G.T. England, D.I. Speiser, X. Xiao, J. Aizenberg, and C. Ortiz (2015). Multifunctionality of chiton biomineralized armor with an integrated visual system. Science 350(6263):952-956. DOI: 10.1126/science.aad1246
Eye Evolution
Varney, R.M, D.I. Speiser, J.T. Cannon, M.A. Aguilar, D.J. Eernisse, and T.H.Oakley (2024). A morphological basis for path-dependent evolution of visual systems. Science 383(6686): 983-987. DOI: 10.1126/science.adg2689
Juarez, B.H, D.I. Speiser, and T.H. Oakley (2019). Context-dependent evolution of ostracod morphology along the ecogeographical
gradient of ocean depth. Evolution 73(6): 1213-1225. DOI:10.1111/evo.13748
gradient of ocean depth. Evolution 73(6): 1213-1225. DOI:10.1111/evo.13748
Ramirez, M.D, A.N. Pairett, M.S. Pankey, J.M. Serb, D.I. Speiser, A.J. Swafford, and T.H. Oakley (2017). The Last Common Ancestor of Most Bilaterian Animals Possessed at Least Nine Opsins. Genome Biology and Evolution 8(12): 3640-3652. DOI:10.1093/gbe/evw248
Speiser, D.I, and W.M. Kier (2017). New Insights from Genetic Data Sets on the Function and Evolution of Visual Systems: Introduction to a Virtual Symposium in The Biological Bulletin. The Biological Bulletin, 233(1): 1-2. DOI: 10.1086/695469
Battelle, B.A., K.E. Kempler, S.R. Saraf, C.E. Marten, D.R. Dugger, D.I. Speiser, and T.H. Oakley (2015). Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes. Journal of Experimental Biology 218:466-479. DOI: 10.1242/jeb.116087.
Oakley, T.H. and D.I. Speiser (2015). How Complexity Originates: The Evolution of Animal Eyes. Annual Review of Ecology, Evolution, and Systematics, 46: 237-260. DOI: 10.1146/annurev-ecolsys-110512-135907
Stahl, B.A, J.B. Gross, D.I. Speiser, T.H. Oakley, N.H. Patel, D.B. Gould, and M.E. Protas (2015). A Transcriptomic Analysis of Cave, Surface, and Hybrid Isopod Crustaceans of the Species Asellus aquaticus. PLoS ONE 10(10):e0140484.
DOI: 10.1371/journal.pone.0140484
DOI: 10.1371/journal.pone.0140484
Speiser, D.I, M.S. Pankey, A.K. Zaharoff, B.A Battelle, H.D. Bracken-Grissom, J.W. Breinholt, S.M. Bybee, T.W. Cronin, A. Garm, A.R. Lindgren, N.H. Patel, M.L. Porter, M.E. Protas, A.S. Rivera, J.M. Serb, K.S. Zigler, K.A. Crandall, and T.H. Oakley (2014). Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms. BMC Bioinformatics 15:350. DOI:10.1186/s12859-014-0350-x.
Porter, M.L, D.I. Speiser, A.K. Zaharoff, R.L. Caldwell, T.W. Cronin and T.H. Oakley (2013). The evolution of complexity in the visual systems of stomatopods: Insights from transcriptomics. Integrative and Comparative Biology 53: 39-49. DOI:10.1093/icb/ict060.
Ramirez, M.D, D.I. Speiser, M.S. Pankey, and T.H. Oakley (2011). Understanding the dermal light sense in the context of integrative photoreceptor cell biology. Visual Neuroscience 28: 265-279. DOI:10.1017/S0952523811000150.
Biology of Color
Chappell, D.R, C.L. Boggs, and D.I. Speiser (2023). Two sides of the same wing: ventral scales enhance dorsal wing color in the butterfly Speyeria mormonia. Journal of Experimental Biology 226(19): jeb24696. DOI: 10.1242/jeb.246396
Harris, O.K, A.C.N. Kingston, C.S. Wolfe, S. Ghoshroy, S. Johnsen, and D.I. Speiser (2019). Core–shell nanospheres behind the blue
eyes of the bay scallop Argopecten irradians. Journal of the Royal Society Interface 16: 20190383. DOI: 10.1098/rsif.2019.0383
eyes of the bay scallop Argopecten irradians. Journal of the Royal Society Interface 16: 20190383. DOI: 10.1098/rsif.2019.0383
Williams, S. T, A.E. Lockyer, P. Dyal, T. Nakano, C.K. Churchill, D.I. Speiser (2017). Colorful seashells: Identification of haem pathway genes associated with the synthesis of porphyrin shell color in marine snails. Ecology and Evolution, 7(23), 10379-10397. DOI:10.1002/ece3.3552
Williams, S.T, S. Ito, K. Wakamatsu, T. Goral, N.P. Edwards, R. A. Wogelius, T. Henkel, L.F.C. de Oliveira, L.F. Maia, S. Strekopytov, T. Jeffries, D.I. Speiser, and J.T. Marsden (2016). Identification of Shell Colour Pigments in Marine Snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda). PloS ONE 11(7): e0156664. DOI: 10.1371/journal.pone.0156664
Speiser, D.I, D.G. DeMartini, and T.H. Oakley (2014). The shell-eyes of the chiton Acanthopleura granulata (Mollusca, Polyplacophora) use pheomelanin as a screening pigment. Journal of Natural History 48: 2899-2911. DOI: 10.1080/00222933.2014.959572.